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Simulation of craze failure in a glassy polymer:

rate dependent drawing and rate dependent

failure models
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The failure of a craze ahead of a crack growing under steady state conditions in a glassy
polymer is investigated by modeling the craze microstructure using a highly anisotropic
network of springs. A rate dependent drawing law is used to determine the shape of the
craze-bulk interface. Approximate analytical results are developed to link the normal stress
on the craze-bulk interface, the thickness of the craze and the far field stress intensity factor
to the crack propagating velocity, through the craze failure criterion and the craze
microstructural parameters. The accuracy of the analytical results is examined using a
detailed numerical simulation. Our analysis shows that the rate independent craze failure
criterion, which assumes the failure stress for fibrils ahead of the crack tip to be a material
constant independent of the crack growth rate, leads to predictions of the dependence of
the craze thickness and the fracture toughness on crack growth rate that are contrary to
what is found experimentally. Rate dependent craze failure criteria are then proposed.
Specifically, we study a case where the crack tip fibril breaks down by rate dependent chain
scission and a case where the crack tip fibril fails by rate dependent chain disentanglement.
For the rate dependent chain scission criterion, the results given by the rate independent
constant failure stress criterion are retrieved in the limit of low crack propagation velocity.
Also, there exists a critical stress intensity factor below which steady state crack
propagation is impossible, i.e., crack growth becomes unstable. C© 1999 Kluwer Academic
Publishers

1. Introduction
The fracture of glassy polymers is linked to the stress-
induced growth and breakdown of crazes, which are
planar crack-like defects. But unlike cracks, the two
surfaces of crazes are bridged by many fine fibrils which
give crazes some load bearing capacity. It is well known
that the craze grows in length by the Taylor meniscus
instability [1, 2] and grows in width by surface draw-
ing [1], in which the polymer chains are drawn from
strain-softened bulk into the fibrils. The volume fraction
of the crazed material is approximately uniform along
the craze [1]. Experiments indicate that the drawing
stressσd along the craze-bulk interface is also approxi-
mately uniform, except near the crack tip and the craze
tip [1]. This approximate uniform traction along the
craze-bulk interface motivates the use of the Dugdale
model [3] to calculate the craze opening displacement
which is used as the failure criterion for the craze, i.e.,
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the craze will fail when the crack tip opening displace-
ment reaches a critical value,δc. Within the framework
of the Dugdale model, the critical crack tip opening
displacementδc cannot be determined and is treated as
a fitting parameter.

Consistent with the Dugdale model, the fibrils in-
side the craze were historically modeled as parallel
cylinders perpendicular to the craze surface. This as-
sumption of parallel fibrils and the constant drawing
stress (Dugdale model) implies that there is no lateral
load transfer between individual fibrils so that the force
on every fibril is identical, i.e., there is no stress con-
centration inside the craze so that the craze can draw
indefinitely. This means that the critical crack tip open-
ing displacementδc=∞. This apparent paradox was
resolved by Brown [5], who proposed a mechanism
of craze failure based on the observation from trans-
mission electron micrographs (TEM) of crazes which
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reveal the existence of short fibrils running between the
main tensile fibrils [4]. Brown [5] pointed out that the
existence of these “cross-tie” fibrils has a profound ef-
fect on the failure mechanism of the craze. The cross-tie
fibrils can transfer load between main fibrils thus allow-
ing the force in the first fibril ahead of the crack tip to
reach the breaking force.

One of the difficulties in modeling the process of
craze breakdown is the specification of the boundary
conditions along the craze-bulk interface, since the lo-
cation and shape of the craze-bulk interface are deter-
mined by the drawing law of the craze fibrils, mass
conservation of the craze material, the elastic response
of the bulk material outside the craze and the continuity
of traction and displacement across the craze-bulk in-
terface. The difficulty of this fully coupled problem is
avoided by Brown [5] who modeled the crack tip craze
material as an infinite strip of highly anisotropic elastic
continuum with elastic moduliCi j . Fig. 1 shows the
relative scale of the problem. The length of the craze
L is much smaller than the crack lengtha, which in
turn is much smaller thanw, the width of the speci-
men. The thickness of the craze at the crack tip 2hc is
much smaller thanL but is substantially larger than the
fibril spacing. Thus the geometry in Fig. 1b is approx-
imated by an infinite strip with thicknesshc (Fig. 1c).
Due to symmetry, only half the craze needs to be con-
sidered. The effect of crack tip loading is simulated by
applying a uniform displacement on the strip bound-
ary, which is determined by the condition that the stress
far away from the crack tip is uniaxial and is equal to
the drawing stressσd. Specifically, a uniform displace-
ment1= (σd/C22)hc is applied on the craze boundary,
whereC22 is the tensile modulus of the craze in the

Figure 1 Figure 1 shows the relative scale of the problem. The length
of the crazeL is much smaller than the crack lengtha, which in turn is
much smaller thanw. The thickness of the craze at the crack tip 2hc is
much smaller thanL but is substantially larger than the fibril spacing.
Thus the geometry in Fig. 1b is approximated by an infinite strip with
thicknesshc (Fig. 1c).

direction of the main fibrils.hc is the half thickness of
the strip and is related to the critical crack tip opening
displacementδc by:

δc = 2hc(1− vf ) (1)

wherevf is the volume fraction of the fibrillated material
and is found to be a material constant [1].

The strip model predicts that the tensile stress ahead
of the crack tip has the classical inverse square root sin-
gularity that scales with

√
hcα0, whereα2

0=C66/C22
and C66 is the in-plane shear modulus of the crazed
material. The craze is assumed to fail when the aver-
age tensile stress in the first fibril ahead of the crack tip
reaches the critical value ofσf whereσf is assumed to be
a material constant and independent of the crack growth
rate. Using this failure criterion, and the crack tip sin-
gular field, Brown showed that the critical crack tip
opening displacementδc is

δc = πD0

α0
(1− vf )

(
σf

σd

)2

(2)

whereD0 is on the order of a fibril spacing. The key
idea of Brown’s strip model is to show that the failure
of craze, e.g.,δc cannot be predicted using a line zone
with zero thickness as in the Dugdale model. Instead,
the microstructural details of the craze as well as its
thickness have to be included in the analysis.

Several improvements on Brown’s model have been
suggested. (1) Huiet al. [6] extended Brown’s model
using anisotropic elasticity to determine the full con-
tinuum stress field inside the craze. (2) Shaet al.[7] re-
placed the anisotropic continuum with a spring network
model to investigate the effects of craze microstructure.
(3) Shaet al.[8] replaced Brown’s assumption of a uni-
form displaced strip with a more realistic stress distri-
bution on the craze boundary derived from an assumed
rate independent drawing law.

The aforementioned calculations [5–8] neglect the
fact that crack growth in polymer glasses due to
craze breakdown is a rate dependent process which
was demonstrated experimentally by D¨oll [9] and Dai
et al. [10]. Previous analysis by Kramer and Hart [11]
and Knausset al.[12] included rate dependence in their
crack growth model but still treated the craze (or the
fracture process zone in Knauss’s model) as a line zone
of zero thickness. The two dimensional nature of load
transfer between the fibrils inside the craze, which is
shown to be critical in the understanding of the craze
failure process, is not considered.

In this paper, the shape of a craze ahead of a steadily
growing crack is predicted using a rate dependent draw-
ing law, i.e.,

ḣ = α
(
σn

σ0

)n

(3)

whereσn is the normal stress on the craze bulk interface
at a fixed material point. Hereα is a material constant
with dimensions of velocity,σ0 is a material parameter
which is often taken as the nominal drawing stress,n is
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a material parameter and is typically on the order of 10
or larger [13]. The craze is no longer assumed to have
zero thickness or to be a strip with uniform thickness as
in previous studies [5–10]. It has finite thickness and the
craze thickness profile,h(x), is calculated through the
mass conservation of the crazed material and the stress
and displacement continuity across the craze-bulk
interface.

The aim of this paper is to study the dependence of
the crack growth rate on the applied stress intensity fac-
tor, the drawing law, the craze microstructural param-
eters and the possible failure criteria of the craze. An-
alytical approximate solutions are developed to study
the failure of the craze. The effect of rate dependence
of the problem comes in through the drawing law, the
crack growth rate and the fact that the failure process
may be rate dependent. As in previous work [5–8], we
first consider the rate independent failure criterion and
we demonstrate that the rate independent craze fail-
ure criterion leads to predictions which are contrary to
the experimental observations. This motivates us to in-
clude the rate effects in the craze failure model. We
then propose two rate dependent craze failure crite-
rion, i.e., (1) rate dependent chain scission and (2) rate
dependent chain disentanglement. Analyses are con-
ducted for the rate dependent failure criterion and good
agreement is found between the simulation and the ex-
periments.

2. Problem formulation
2.1. Geometry
The geometry is shown in Fig. 2. As in all previous
calculations, we assumed small scale yielding (SSY)
condition [14–16], since the length of the craze is small
compared to the length of the crack and the specimen
dimensions so that the far field applied elastic stress
intensity factorKA controls the growth of the craze.
Steady state crack propagation is assumed. A moving
coordinate system (x, y) is attached to the crack tip (see

Figure 2 Small scale yielding condition: the craze of lengthL is assumed to be small compared with the crack lengtha so that the crack can be
modeled as semi-infinite. The loading is simulated by theKA field applied at∞. (X, Y) is a Cartesian. coordinate fixed at a material point and (x, y)
is the moving system with its origin fixed at the crack tip.

Fig. 2) which moves along the positivex direction with
a constant velocitẏa, thus:

x = X − ȧt (4)

where the Cartesian coordinate system (X, Y) are fixed
at one material point. The craze has its tip atx= L. The
far field loading is Mode I and is given by [16]:

σi j (r →∞, θ ) = KA√
2πr

σi j (θ )

whereσi j (θ ) are universal functions describing the an-
gular variation of the in-plane stress components [16].
Note that the craze is no longer assumed to have zero
thickness as in [11] and [12]. The unknown shape of
the craze-bulk interface is denoted byy= h(x) and will
be obtained by solving a fully coupled interior-exterior
problem as we will show next.

2.2. Elastic field outside the craze
The craze is assumed to have an unknown shape ofh(x)
with unknown traction−σn(x) acting on its surface.
The tractionσn(x) and the craze shapeh(x) are deter-
mined by the continuity of traction and displacement
along the craze-bulk interface, the drawing law and the
mass conservation condition. From the continuity of
displacement across the craze-bulk interface and mass
conservation, the displacement of the crack face as seen
by the outer elastic field,vc(x) can be shown as [1, 8]:

vc(x) = h(x)(1− vf ) (5)

where the small elastic stretch of the craze material is
neglected andvf is the volume fraction of the fibrillated
material. The factor (1− vf ) results from mass conser-
vation, i.e., the original height of the uncrazed material
must be subtracted fromh(x) to obtain the displacement
of the glassy material above the interface. A detailed
discussion of Equation 5 can be found elsewhere [1, 8].
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The glass outside the craze is modeled as a linear
elastic, isotropic continuum with Young’s modulusE
and Poisson’s ratioν. For a given far field loadingKA,
vc(x) can be expressed in terms ofKA and the normal
traction−σn(x) on the crack faces [17], i.e.,

vc(x) = 2(1− ν2)

πE

(
2πKA

√
L − x

2π

−
∫ L

−∞
σn(s) log

∣∣∣∣∣
√

L − x +√L − s√
L − x −√L − s

∣∣∣∣∣ ds

)
(6a)

The location of the craze tip,x= L, is determined by
enforcing the condition of bounded stresses at the craze
tip, which gives [17]

KA =
∫ L

−∞

√
2σn(s)√
π (L − s)

ds (6b)

Note that bothσn(x) andvc(x) (i.e.,h(x)) are unknown
and their values depend on the crack growth rate and
the drawing law.

2.3. Drawing law
As mentioned earlier, the craze shapeh(x) is deter-
mined by the drawing law which specifies how fibrils
are drawn from the craze-bulk interface. In this work
we consider a power law drawing law (Equation 3), i.e.,

ḣ(X, t) = α
(
σn(X, t)

σ0

)n

Under the steady state condition (Equation 4)h(X, t)=
h(x), the material derivativėh(X, t) is(

σn(x)

σ0

)n

= − ȧ

α

dh(x)

dx
(6c)

whereȧ/α is a dimensionless velocity.

2.4. Elastic field inside craze
The material inside the craze zone, i.e.,y< h(x) is mod-
eled by the spring network shown in Fig. 3. The spring
network is obtained by periodic extension of the basic
unit shown in Fig. 2c. The effective continuum mod-
uli Ci j of the resulting spring network are calculated
in Ref. [7] and are given in Appendix A. This spring
network model simulates the discreteness of the craze
microstructure and takes into account of the cross-tie
fibrils. The number of spring elements in general de-
pends on the unknown craze thicknessh(x). The forces
in each element can be computed onceh(x) and the
traction on the craze-bulk interface is determined.

2.5. Analytical approximations
The problem stated in Sections 2.2–2.4 is fully coupled
so that no closed form analytic solution is possible. To

Figure 3 (a) Model of craze microstructure. (b) 2D spring network
model used to simulate the craze microstructure. (c) Basic unit of the
2D spring network. The definition ofl , lc, km, kc and d are given in
Appendix A.

gain insight, we propose an approximate analytic solu-
tion based on the following simplifying assumptions:

(1) The normal traction on the unknown craze-bulk
interface forx> 0 is spatially uniform and is denoted
by σd. One consequence of this assumption is that the
energy release rateG is given by

G = 2hcσd(1− vf ) (7a)

where 2hc is the craze thickness at the crack tip. A
detailed discussion of Equation 7a can be found in
Ref. [6]. Recall thatG is related to the applied stress
intensity factorKA by

G = (1− ν2)K 2
A

/
E (7b)

(2) The stresses inside the craze is obtained by mod-
eling the craze as a strip with uniform thicknesshc.
Unlike the rate independent case,hc is a function ofȧ.
The spring network model is replaced by an equivalent
anisotropic continuum with modulusCi j as described
in Appendix A.

The validity and accuracy of the analytical ap-
proximate solution is justified by a detailed numeri-
cal simulation which is given in Appendix B. In the
numerical simulation, the craze material is modeled us-
ing the spring network model described in Section 2.4.
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Following our assumptions, the stress distribution
along the unknown craze-bulk interfaceσn(x) is

σn(x) = σd for x > 0

σn(x) = 0 forx < 0
(8)

Using Equations 6 and 6c, the drawing stress,σd,
and the applied far field stress intensity factor,KA, are
found to be

σd

(
ȧ

α

hc

L

)1/n

σ0 (9a)

KA = 2
√

2√
π
σd

√
L (9b)

where 2hc is the craze thickness at the crack tip (x= 0).
Note thathc andL in Equations 9a and 9b are functions
of ȧ. Integrating Equation 6a and using Equations 5 and
9b, the craze thickness profile is found to be

h(x̂) =
(1− ν2)K 2

A

4E(1− vf )σd

(
2
√

1− x̂ + x̂ log

(
1+√1− x̂

1−√1− x̂

))
(10a)

wherex̂= x/L is the normalized distance. The thick-
ness of the craze at the crack tip,hc, i.e.,x= 0 in Equa-
tion 10a, is

hc = (1− ν2)K 2
A

2E(1− vf )σd
= 4(1− ν2)σdL

πE(1− vf )
(10b)

Combining Equations 10b with 9a, the drawing stress
along the craze-bulk interface,σd, is found to be

σd =
(

4(1− ν2)

πE(1− vf )

ȧ

α
σ0

)1/(n− 1)

σ0 (11)

Döll [9] has conducted detailed experimental studies
on the craze ahead of a steady state propagating crack
inside a homogeneous polymer PMMA. His experi-
mental measurements of the drawing stress versus the
steady state crack growth rate is plotted in Fig. 4 [9].
The solid line in Fig. 4 is obtained using our solution for
the drawing stressσd to fit Döll’s data. The fitting pa-
rameters areα= 10−4 m/s,σ0= 100 MPa andn= 30.
The experimental data is fitted up to crack growth rate
less than 1 m/s. The reason is that at higher velocities,
adiabatic heating at the craze-bulk interface will cause
the drawing stress to level off (as shown in Fig. 4). This
phenomenon cannot be predicted using our simple rate
dependent drawing law (Equation 3). In previous stud-
ies [5–8],σd is assumed to be a material constant inde-
pendent of the crack growth rate. Note that the expres-
sion forσd (Equation 11) is independent of the failure
criterion.

Figure 4 The drawing stress dependence on the crack growth rate for
PMMA. The filled circles are from the experimental measurements of
Döll [9] and the solid line is the fit of analytical expression (Equation 11)
to the experiments.

2.6. Approximate stress field inside
the craze

The results in the last section allow us to determine the
rate dependent tractionσd on the craze-bulk interface
and the thickness of the craze at the crack tip in terms
of KA andȧ. For a given crack growth ratėa, the ap-
plied far field stress intensity factorKA is determined
if a failure criterion is specified. To enforce the failure
criterion, we need to obtain the stresses on the fibrils
directly ahead of the crack tip. Following our assump-
tion 2, these stresses are obtained using the uniform
strip model of Brown [5] where the thickness of the
strip is given by Equation 10b. When the traction on
the craze-bulk interface has the form given by Equa-
tion 8, the normal stress ahead of the crack tip inside
the craze zone,σ2(x, y= 0) is found to be well approx-
imated by [7]

σ2(x, y= 0)= σd√
1− exp

(− πx
hcα0

) (12a)

whereα2
0=C66/C22. In particular, the average stress

in the first fibril directly ahead of the crack tip,σa, is

σa = σ2(x = D, y = 0)= σd√
1− exp

(− πD
hcα0

) (12b)

The characteristic distanceD is an unknown parameter
which is used to match the discrete model, i.e., stress
at the first crack tip fibril, to the continuum solution
(Equation 12a) and is found to bed/2 [7], whered is
the fibril spacing.

3. A rate independent fracture criterion
Following Brown [5] we first assume that crack growth
occurs when the average stress on the fibril immediately
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ahead of the crack tip,σa, reaches the breaking stress,
σf , [5–8]

σa = σf = 6eff fb (13a)

where fb is the force required to break a backbone bond
of polymer and6eff is the number of entangled strands
per nominal unit craze area which is given by [7, 18]:

6eff = q6

(
1− Me

q Mn

)
(13b)

where6 is the areal density of entangled strands which
cross a plane in the undeformed polymer glass,q is
the ratio of the entangled strand density before crazing
to that after crazing,Me is the entanglement molecular
weight andMn is the number average molecular weight
of polymer before crazing. Note that this failure crite-
rion corresponds to a rate independent chain scission
mechanism.

When the average stress in the first fibril ahead of the
crack tip, or more precisely when the tensile stress at
x= d/2, which is given by Equation 12b, reaches the
failure stress, the craze is assumed to fail, i.e.,

σd√
1− exp

(− πd
2hcα0

) = σf = 6eff fb (14)

with σd given by Equation 11 and is a function of the
crack growth rate.

Paredes and Fischer [19, 20] have found that the prod-
uctσdd is a constant, whered is the fibril spacing. Since
σd is dependent on the crack growth rate, this means that
the dimensions of the craze microstructure also depend
on the crack velocity. Kramer [1] has shown that

σdd = 80

β0
= A0 (15)

where0 is the energy to create new surface at craze tip
or craze-bulk interface including an energy of primary
chain rupture.β0 is the coefficient of proportionality
between average hydrostatic stress and tensile stress,
σd, at the craze-bulk interface. Equation 15 implies that
the fibril spacing and drawing stress are interdependent
and throughout this paper, we will assume the product
of σdd= A0 to be a constant.

Equations 14 and 15 allow us to solve for the critical
craze thickness at the crack tip,hc, as a function of the
crack velocityȧ and material constants, i.e.,

hc = −πA0

2α0σd ln
[
1− ( σd

6eff fb

)2] (16a)

whereσd is given by Equation 11. The critical crack tip
opening displacement,δc, is related tohc by Equation 1.

The relationship of the stress intensity factorKA and
the energy release rateG to ȧ can be computed using
Equation 7a and 7b

K 2
A =

−π (1− vf )A0E

α0(1− ν2) ln
[
1− ( σd(ȧ)

6eff fb

)2] (16b)

whereA0 = 80/β0

G = −π (1− vf )A0

α0 ln
[
1− ( σd(ȧ)

6eff fb

)2] (16c)

Fig. 5a shows the dependence of the craze thickness
at the crack tip,hc, on normalized velocitẏa/α using
Equations 16a and 11. We expect that at high crack
propagating speed, the craze is thin, since at high speed
the craze has less time to thicken. When the crack prop-
agates slowly (̇a/α is small), the craze has enough time
to form fully and the craze is thick. This is indeed what
Fig. 5a shows. However, we notice that this result (hc
decreases wheṅa/α increases) is inconsistent with ex-
perimental observations [9, 10] which show the oppo-
site trend (hc increases wheṅa increases).

Fig. 5b shows a plot ofG versusȧ/α using Equa-
tion 16c. It shows thatG decreases monotonically as
ȧ/α increases. This result is also inconsistent with

Figure 5 (a) The dependence ofhc on ȧ/α using Equation 16a. (b) The
dependence ofG on ȧ/α using Equation 16c.
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experimental results, which show that the fracture
toughness increases as velocity increases [10]. This dis-
crepancy is due to the rate independent fracture crite-
rion we have used (Equation 13a). Equation 9a implies
that the drawing stressσd increases aṡa increases (see
Fig. 4). If the fibril failure stressσf is independent oḟa,
then the thickness of the craze has to decrease with in-
creasingȧ for otherwise the stress in the crack tip fibril
will exceedσf according to Equation 14. The experi-
mental observations can therefore only be reconciled
by assuming thatσf increases witḣa. Two physically
reasonable models for this dependence are described in
Section 4 below.

4. Rate dependent failure models
In this section, we re-examine the dependence of the
energy release rateG and the craze thickness at the
crack tip,hc, on the crack propagating velocityȧ, based
on two rate dependent failure criteria: chain scission and
chain disentanglement.

4.1. Chain scission
A polymer chain can exist in a bonded state or in a
broken state. If the polymer is stable, the energy levels
of these two states must be different as shown in Fig. 6.
The initial energy difference between the bonded and
broken states is 21G0. In order for a polymer chain to
break, it must pass over an energy barrierG∗ +1G0,
and for bond reformation, an energy barrierG∗ −1G0.
When a normal stress,σ , is applied in the direction
of bond breakdown, it causes a reduction of the free
energy barrier to break the chain. Analogously, there
is an increase in the barrier height for the healing of a
broken bond as shown in Fig. 6. Assuming the number

Figure 6 The free energy diagram for the bonded and broken state. The
solid line represent the stress free state where there is an initial energy
difference 21G0 for the two states. The dashed line represent the free
energy curve after a normal stress is applied.

of chains in one fibril isN, the rate of breakdown is
[13, 21, 22]

−Ṅ = N
λkBT

h

[
exp

(
−G∗ +1G0− σλA/(2N)

kBT

)
− exp

(
−G∗ −1G0+ σλA/(2N)

kBT

)]
= N

λkBT

h
exp

(
− G∗

kBT

)
2 sinh

×
(
σλA/(2N)−1G0

kBT

)
(17)

whereλ is the bond displacement between the bonded
and broken state as shown in Fig. 6,A is the cross sec-
tional area of the fibril,kB is the Boltzmann constant,h
is the Planck’s constant andT is the absolute tempera-
ture.

Steady state crack propagation (Equation 4) implies
that Ṅ=−ȧN,x, so that Equation 17 becomes

σ =
21G0N

λA
+ 2NkBT

λA
sinh−1

(
ȧN,x

h

2NλkBT
eG∗/kBT

)
(18a)

Equation 12a implies that the stress decreases rapidly
to its nominal valueσd at very small distance from
the crack tip. This allows us to use the simplify-
ing assumption that all the chain scission happens at
the first fibril ahead of the crack tip, i.e.,N=6eff A,
N,x|x= d

∼= N/d, so the stress needed to fail the first
fibril ahead of the crack tipσf can be computed from
Equation 18a, i.e.,

σf = 21G06eff

λ

+ 2kBT6eff

λ
sinh−1

(
ȧ

h

2λkBT d
eG∗/kBT

)
= σ1+ σ2 sinh−1(ȧ/β) (18b)

where

σ1 = 21G06eff

λ
(19a)

σ2 = 2kBT6eff

λ
(19b)

β = β0/σd and β0 = 2λkBT A0

h
e−G∗/kBT

(19c)

In Equation 18b,σ1 is the rate independent failure stress
for polymer chain andσ1 sinh−1(ȧ/β) is the contribu-
tion due to the rate dependent drawing and failure. For
PMMA, 1G0 is estimated to be 3.5× 10−20 J [22] and
6eff to be 0.285 strands/nm2 [7, 23]. The separation
distanceλ is on the order of 1̊A for C−C bond. Us-
ing these values, it is found thatσ1 ≈ 200 MPa and
σ2 ≈ 25 MPa forT = 300 K. As a check, the forcefb
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needed to break one polymer chain in the low velocity
limit can be found using Equation 18b (withσf ≈ σ1)
to be 0.7× 10−9 N, which is consistent with previous
estimates [12, 24].

The half thickness of the craze at the crack tiphc,
can be obtained using Equation 14 withσf replaced by
Equation 18b. This results in

hc = −πA0

2α0σd ln

[
1−

(
σd

σ1+ σ2 sinh−1(ȧ/β)

)2
] (20a)

The relationship between the stress intensity factor and
ȧ can be computed using Equation 7b as

K 2
A =

−(1− vf )πE A0

(1− ν2)α0 ln

[
1−

(
σd

σ1+ σ2 sinh−1(ȧ/β)

)2
] (20b)

Note that A0 in Equations 20 is a material constant
given by Equation 15 and thatσd is a function ofȧ
(Equation 11).

Fig. 7a shows the dependence ofKA onȧ as predicted
by Equation 20a usingβ = 10 N/(m s). This choice
of β0 is used to fit the experimental data of D¨oll [9].
There are two branches in theKA versusȧ curve. The
upper branch corresponds to the higher crack velocity
whereas the lower branch gives a lower crack velocity
for the sameKA. The lower branch is unstable in the
sense that, for a fixedK > K c

A, a slight increase in the
crack velocity will cause the stress on the first fibril
to increase beyond its critical value, thus causing fur-
ther acceleration of the crack until the higher velocity
is reached on the stable branch. In a load controlled ex-
periment, the upper branch of theKA versusȧ curve is
observed. Note that there exists a critical stress inten-
sity factor K c

A (at ȧc) below which there is no steady
state solution. This also agrees qualitatively with the
experimental results [11].

Although there are experimental data on a craze
formed ahead of a crack growing at a constant velocity
in a homopolymer, very little is known about the fail-
ure mechanism of the craze at the fibril level. Assuming
that chain scission is the dominant failure mechanism
in Döll’s experiments, we compare the analytical pre-
diction (Equation 20b) with D¨oll’s experimental data
which is shown in Fig. 7b as open circles. The unsta-
ble part of theKA versusȧ curve (in Fig. 7a) is not
shown. Although reasonable agreement between our
theory and D¨oll’s data is found forȧ< 1 m/s, the the-
oretical curve has a different curvature than the exper-
imental data especially at high velocity. This may be
because adiabatic heating at the craze bulk interface at
these crack velocities lowersσd below the value pre-
dicted by Equation 11. This hypothesis is supported
by the actual data of D¨oll for σd shown in Fig. 4. To
test this hypothesis, we refit D¨oll’s data forȧ> 1 m/s
using Equation 20b, assuming thatσd has a constant
value of 100 MPa. The analytical fit is shown as stars
in Fig. 7b. The resulting fit is improved somewhat but
it is clear that our analytical results still underestimate
KA at larger velocities. Note that heating at the craze-

(a)

(b)

Figure 7 (a) Plot of applied stress intensity factorKA versus the crack
propagation velocitẏa (Equation 20b) for PMMA. (b) The solid line is
the analytical solutions based on the rate dependent chain scission craze
failure criterion while the open circle is the experimental data from D¨oll.

bulk interface will cause other changes besides just de-
creasing the drawing stress. For example, it increases
the likelihood of disentanglement during the fibrilla-
tion process, so thatq, the ratio of the entangled strand
density before crazing to that after crazing, increases
at sufficiently high velocities. Since the force needed
to break a fibril is proportional toq, an increase inq
will lead to further increase inKA. This effect is not
included in out model (Equation 20b) which assumes
q to be a constant.

4.2. Chain disentanglement
Kramer and Berger [18] have proposed a disentangle-
ment model for a chain in the highly stretched region
of the craze fibril near the craze-bulk interface. Here,
we modify Kramer and Berger’s analysis to consider
disentanglement in the fibrils ahead of the crack tip so
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that we can study the process of craze fibril breakdown
by disentanglement.

Consider a molecule in a drawn fibril consisting of a
number of extended molecular lengths between entan-
glements. The length of these is taken to be the contour
length between entanglementle= l0(Me/M0), wherel0
is the projected length of the mer along the chain and
Me andM0 are the entanglement molecular weight and
the mer molecular weight, respectively. The monomer
frictional force in a direction away from the center of
the chain,fm, is assumed to be a nonlinear function of
the velocity of a monomer along the chain relative to
its surroundingsvm, i.e.,

( fm)p = vmζ0 for vm > 0

(− fm)p = −vmζ0 for vm < 0
(21)

whereζ0 is the monomer friction coefficient andp> 0
is a material constant. In Kramer and Berger’s original
work, a linear relation is assumed betweenfm andvm,
i.e., p= 1.

Following Kramer and Berger’s analysis, the normal
stressσ on a fibril is found to satisfy(

σ

σe

)p

= δ̇ (22a)

whereδ̇ is the rate of disentanglement andδ is the con-
tour length between entanglements.σe is a material con-
stant and its expression in terms of molecular parameter
is

σe = Me

M0d2
(ζ0)1/p 2p

p+ 1

×
[

4Me

M ′n

p

2p+ 1

[
1−

(
1+ M ′n

4Me

)(2p+ 1)/p]

+
(

1+ M ′n
4Me

)(p+ 1)/p]
(22b)

where d is the fibril spacing. The derivation of
Equations 22a and 22b is given in Appendix C.M ′n in
Equation 22b is the number average molecular weight
of the polymer fibrils.M ′n differs fromMn, the number
average molecular weight of the bulk polymer, since
chains are broken during fibril formation by surface
drawing. Its relation toMn is [1]

1

M ′n
= 1

Mn
+ 1− q

Me

whereq is the ratio of the entangled strand density
before crazing to that after the crazing.

The amount of disentanglement in the fibril at a dis-
tancex ahead of the crack tip is obtained by integrating
Equation 22a subjected to the steady state condition
(Equation 4), i.e.,

δ̇ = −ȧ
∂δ

∂x

According to Equation 22a, the amount of disentangle-
ment atx is (

σ (x)

σe

)p

= −ȧ
∂δ(x)

∂x
(22c)

For the disentanglement failure mechanism, the craze
will fail when the network strands in the first fibril ahead
of the crack tip (x= d) are totally disentangled, i.e.,
δ(d)= δ0 whereδ0 is the critical value for a fibril to
disentangle fully and is found to be [1, 18]

δ0 = le(1+ M ′n/2Me)

At the craze tip,x= L, the craze fibrils are assumed to
be fully entangled, that isδ(L)= 0. Using Equation 22c
andδ(L)= 0, we have

δ(x)=
∫ x

L

∂δ

∂s
ds=

∫ x

L
− 1

ȧ

(
σ (s)

σe

)p

ds 0< x< L

(23)

Integrating Equation 23 and enforcing the failure crite-
rion δ(d)= δ0, we obtain

L ∼= δ0ȧ

(
σd

σe

)−p

(24)

whereσd andσe are given by Equations 11 and 22b,
respectively. The derivation of Equation 24 is given in
Appendix D.

Substituting Equation 24 into Equation 10b, the fol-
lowing explicit expressions forhc andKA are obtained,

hc = 4(1− ν2)δ0

(1− vf )πE
σ

1− p
d σ p

e ȧ (25a)

KA = 2
√

2δ0ȧ√
π

σ
1− p/2
d σ p/2

e (25b)

where σd is a function of velocity and is given by
Equation 11.

Using Equations 7a and 25a, the energy release rate
is related toȧ by,

G = A1(ȧ)(n+ 1− p)/(n− 1) (26)

where

A1= 8(1− ν2)δ0

πE

(
4(1− ν2)σ0

πE(1− vf )

)(2− p)/(n− 1)

σ
(2− p)
0 σ p

e .

Recent experiments of strengthening a polymer/poly-
mer bi-material interface using a deuterated poly-
styrene-polyvinylpyridine (dPS-PVP) diblock co-
polymer with a moderately long dPS block (540 units),
showed that the dominant craze failure mechanism is
disentanglement [11]. The results obtained above can
be used to estimate the craze failure at such inter-
faces, e.g., a PS/PVP interface reinforced using dPS-
PVP block copolymers. Experiments have shown that
a craze can only form at the PS side of the PS/PVP
interface [26]. Assuming the displacement of the PVP
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Figure 8 Plot of energy release rateG versus the crack propagation rate
ȧ. The solid line are the plot of the analytical solution using the rate
dependent chain disentanglement craze failure criterion (Equation 26).
The filled circles are the experimental measurement for a PS/PVP in-
terface [10] reinforced by 540–510 dPS-PVP diblock copolymer at a
grafting density of6= 0.14 chains/nm2. The error bar on the experi-
mental results represents the standard deviation.

surface is negligible compared with the stretch of the
craze microstructure, the craze formed at the bima-
terial interface is similar to the half craze we have
studied in this paper. This is because in our simula-
tion, we only consider the upper half plane (y> 0)
due to symmetry. Since the craze cannot form on the
PVP side, theG for the bimaterial interface is equal
to G/2 in this paper. Therefore we can use the same
analytical expressions, e.g., Equation 26 for disentan-
glement, to study craze breakdown at a bi-material in-
terface, e.g., PS/PVP. Fig. 8 plots the interface frac-
ture toughnessG versusȧ for a PS/PVP interface re-
inforced with a dPS-PVP diblock polymer [10]. The
solid line represents Equation 26 of the disentanglement
model (Section 4.2), where we have chosenA1= 300
and p= 9, and we have assumed thatn= 10 for PS.
Reasonable agreement is found between the simulation
(Equation 26) and the experimental results.

5. Conclusion
We have extended the strip model of Brown to pre-
dict the rate dependent stresses inside the craze. For
the power law drawing model used in this study, the
strip model provides an approximate analytical solu-
tion for the crack tip stresses as demonstrated by our
numerical simulation. We anticipate that this can be ex-
tended to include different drawing laws, thus avoiding
the difficult problem of finding numerical solution to
the coupled rate dependent boundary value problem.

In the rate independent limit, the fracture of the poly-
mer glass can be characterized by either a critical energy
release rateGc or a critical stress intensity factorKc.
This is no longer possible when the material behavior
is rate dependent. In general, the crack growth rate is
controlled by the entire stress history ahead of the crack
tip. For the special case of steady state, we have found
relations betweeṅa andKA(G). The exact relations de-

pend on the failure mechanism of the fibrils ahead of
the crack tip.

We have demonstrated that a rate independent craze
failure criterion cannot explain the experimental obser-
vations of craze fracture even if rate dependent drawing
of the craze fibrils is taken into consideration. Rate de-
pendent craze failure criteria have to be used to obtain
relations betweenKA and the crack growth ratėa that
are consistent with experimental results. The depen-
dence of the drawing stressσd and the craze thickness
at the crack tiphc on ȧ has been explicitly derived, us-
ing rate dependent chain scission and disentanglement
models.

Appendix A: Characteristics of the
spring network
The spring network used in the calculation is formed by
translation of a unit cell as shown in Fig. 3. The springs
which model the main fibrils have spring constantkm
whereas the cross-tie fibrils have spring constantkc. The
distance between the main fibrils is denoted byd and
the angle between the cross-tie fibrils and main fibrils
is denoted byθ . The cross-section areas (and lengths)
of the main fibrils and the cross-tie fibrils are denoted
by Am andAc (l andlc) respectively.

For the stress-strain relation shown below:

σ11 = C11ε11+ C12ε22

σ22 = C12ε11+ C22ε22 (A1)

σ12 = 2C66ε12

where the constantsCi j are defined by:

C11 = Ec sin4 θ C12 = Ec sin2 θ cos2 θ
(A2)

C22 = Em+ Ec cos4 θ C66 = C12

Em (Ec) is the effective modulus of the main (cross-tie)
fibrils and is defined by:

Em = vmEm = vmkml/Am
(A3)

Ec = vcEc = vckclc/Ac

where l and lc denote the length of main and cross-
tie fibrils respectively. In Equation A3,Em= kml/Am
is the extension modulus of a typical main fibril and
Ec= kclc/Ac is the extension modulus of a typical
cross-tie fibril. LetVm andVc denote the volumes occu-
pied by the main and cross-tie fibrils in a unit cell, then
vm=Vm/Vcell, vc=Vc/Vcell are the volume fractions
of the main fibrils and the cross-tie fibrils respectively.

Appendix B: Justification of the approximate
analytical solution using full-field numerical
simulation
To check the validity and accuracy of the analytical
solution presented above, a full field numerical sim-
ulation is conducted. As in Ref. [8, 27], we decom-
pose the problem into two parts. Part I is the solu-
tion of the exterior elastic problem (bulk polymer) with
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unknowntraction−σn(x) acting on the surface of a
semi-infinite crack loaded under small scale yielding
conditions [14–16]. Problem II is the solution of the
interior problem (craze) withσn(x) acting on the un-
known craze surface defined byh(x).

For the interior problem, the craze microstructure is
modeled using a 2D discrete spring network model as
described in Appendix A. For the plane strain analysis,
the fibrils are treated as sheets with stiffness equiva-
lent to layers of fibrils spaced at distanced. Out-of-
plane cross-tie fibrils are neglected. This approxima-
tion has been examined using a 3D network of springs
and has been found to adequately represent the 3D sit-
uation [27]. The numerical values for the 2D spring
network, and a detailed discussion of how its parame-
ters were obtained, are given in reference [7, 8].

Details of the numerical implementation of the outer
and inner problem based on the rate dependent draw-
ing law (Equation 3) and the rate independent fail-
ure criterion (Equation 13a) can be found in refer-
ence [7, 27]. The numerical simulation are based on pa-
rameters for polystyrene (PS). The normalized normal
stressσn(x)/σ0 distribution on the craze-bulk interface
for different normalized non-dimensional craze veloc-
ities (ȧ/α) is shown in Fig. 9. Thex axes is normalized
with respect to the craze lengthL. Fig. 9 shows that
the faster the crack propagates, the higher is the normal
traction on the craze-bulk interface. Note that for the
highest crack velocity,̇a/α= 400 in our simulation, the
normal stress along the craze-bulk interface exhibits a
stress concentration near the crack tip. For slower crack
velocities, i.e.,̇a/α= 3, the stress on the craze-bulk in-
terface is low and is practically uniformly distributed
along the craze-bulk interface. Fig. 9 also shows that the
Dugdale model is a good approximation for the stress
distribution along the craze-bulk interface. Note that
the results near the craze tip (x= L) are not shown in
Fig. 9. This is because in the numerical solution of the
non-linear integral equation of Equation 6a, substantial
error is introduced nearx= L [28, 29]. However, it was
shown in Ref. [28] that the error is localized atx= L
and thus does not affect the stress near thecrack tip.

Figure 9 The normalized normal stressσn(x)/σ0 distribution on the
craze-bulk interface for different crack growth rates.

Figure 10 The plot σd/σ0 versus ln(̇a/α). The numerical simulation
results are plotted as triangles. The approximate analytical solutions of
Equation 11 are plotted as open circles.

Theσd/σ0 dependence on ln(ȧ/α) given by our nu-
merical simulations is shown as triangles in Fig. 10,
whereσd, based on our numerical simulation results,
is calculated by taking the averages ofσn(x) far away
from the crack tip and away from the craze tip, i.e.,
0.1L < x< 0.9L. The corresponding analytical expres-
sion (Equation 11) is plotted as open circles in Fig. 10.
Good agreement is obtained between the numerical
simulation results and the analytical approximation
(Equation 11).

Fig. 11a shows the dependence of the normalized
craze thickness at the crack tiphc/d on ln(ȧ/α). The
simulation results are plotted as triangles. The analyti-
cal expression of Equation 16a, withσd given by Equa-
tion 11, is plotted as open circles in Fig. 11a. Good
agreement is obtained between the numerical results
and the analytical expressions (Equation 16a). Fig. 11b
shows a plot ofKA/(σ0

√
d) versus ln(̇a/α). The numer-

ical simulation results are shown as triangles in Fig. 11b
whereas the analytical expression of Equation 16b is
plotted as open circles. Good agreement is obtained for
thick crazes (loẇa/α corresponds to a thick craze).

Appendix C: Derivation of Equation 22
Following Kramer and Berger [18],vm can be approx-
imated by

vm = 1v
[
1− M ′n

2Me

(
x′ − 1

2

)]
x′ <

1

2

vm = 1v
[
−1− M ′n

2Me

(
x′ − 1

2

)]
x′ >

1

2

(C1)

where1v= δ̇ is the rate of disentanglement.x′ is the
fractional distance along the molecule from one of its
ends. The force in the chain is given by

f (x′) =
∫

M ′n
M0

fm(η) dη (C2)
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Figure 11 (a) The plot ofhc/d versus ln(̇a/α). The numerical simulation
results are plotted as triangles. The approximate analytical solutions of
Equation 16a are plotted as open circles. (b) The plot ofKA/(σ0

√
d)

versus ln(̇a/α). The numerical simulation results are plotted as triangles.
The approximate analytical solutions of Equation 16b are plotted as open
circles.

with the boundary conditions that the forces are zero at
the ends, i.e.,f (0)= 0, f (1)= 0. Putting Equations 21
and C1 into Equation C2 and for simplicity, only con-
sideringp to be an odd number, we have

f (x′) = −2Me

M0
(ζ01v)1/p p

p+ 1

×
[(

1− M ′n
2Me

x′ + M ′n
4Me

)(p+ 1)/p

−
(

1+ M ′n
4Me

)(p+ 1)/p]
x′ <

1

2

f (x′) = −2Me

M0
(ζ01v)1/p p

p+ 1

×
[(
−1− M ′n

2Me
x′ + M ′n

4Me

)(p+ 1)/p

−
(

1+ M ′n
4Me

)(p+ 1)/p]
x′ >

1

2
(C3)

whereM0 is the molecular weight of mer repeat unit
andMe is the entanglement molecular weight.

The average force in the chain〈 f 〉 is given by

〈 f 〉 =
∫ 1

0
f (x′) dx′ = Me

M0
(ζ01v)1/p 2p

p+ 1

×
[

4Me

M ′n

p

2p+ 1

[
1−

(
1+ M ′n

4Me

)(2p+ 1)/p]

+
(
1+ M ′n

4Me

)(p+1)/p]
(C4)

The normal stress in the fibril is given byσ =〈 f 〉/d2

and the rate of disentanglement isδ̇=1v. Thus Equa-
tion C4 can be written as(

σ

σe

)p

= δ̇ (C5)

and

σe = Me

M0d2
(ζ0)1/p 2p

p+ 1

×
[

4Me

M ′n

p

2p+ 1

[
1−

(
1+ M ′n

4Me

)(2p+ 1)/p]

+
(

1+ M ′n
4Me

)(p+ 1)/p]

which is Equation 22b.

Appendix D: Derivation of Equation 24
Integrating Equation 23 fromL tod using the boundary
conditionsδ(L)= 0 andδ(d)= δ0,

∫ L

d

(
σ (x)

σe

)p

dx = δcȧ (D1)

Substitutingσ (x) in Equation 12a into Equation D1,
we obtain

∫ L

d

(
σd

σe

)p dx(
1− exp

(− πx
hcαo

))p/2 = δcȧ (D2)

With the change of variablet =√1− exp(−πx/hcαo),
Equation D2 becomes

I0 =
∫ d2

d1

dt

t p− 1(1− t2)
= δcπ

2hcα0

(
σd

σe

)−p

ȧ (D3)

where

d1=
√

1− exp(−πd/hcα0),

d2=
√

1− exp(−πL/hcα0).
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I0 can be integrated exactly for any positive integerp.
For an integerp, I0 is

I0 =



k∑
i = 1

−1

2i − 1
t−(2i − 1)

∣∣∣∣d2

d1

+ 1

2
ln

(
(1+ d2)(1− d1)

1+ d1

)
− 1

2
ln(1− d2)

for p = 2k+ 1, k = 0, 1, . . .

k∑
i = 2

−1

2i − 2
t−(2i − 2)

∣∣∣∣d2

d1

+ 1

2
ln

(
d2(1+ d1)(1− d1)

d1(1+ d2)

)
− 1

2
ln(1− d2)

for p = 2k, k = 1, 2, . . .

(D4)

In our simulation,d= 17.32 nm,α0=
√

0.02. For a
thick crazehc= 2µm, d1 is calculated to be 0.57. Thus
in Equation D4, both the first and second term on the
right hand side are of order 1 (bounded). Since the
length to thickness ratioL/h is large, e.g.,L/h> 10,
(πL/hcα0)> 224 thusd2 ≈ 1. Since the other terms
in Equation D4 are bounded, the value ofI0 will
be dominated by the last term of Equation D4, i.e.,
−1

2 ln(1− d2). Using a Taylor expansion and omitting
the higher order terms,

d2 = 1− 1

2
exp

(
− πL

hcα0

)
(D5)

The last term of Equation D4 is therefore will be ap-
proximated by (πL/2hcαo) À 1. We use this as an
approximation forI0 so that Equation D3 becomes
L = δcȧ(σd/σe)−p which is Equation 24.

From Equation D4, we find that the singular stress
distribution near the crack tip (1− exp(−πx/
hcαo))−1/2 do not substantially affect the disentangle-
ment. Note that in Equation D4,

t =
√

1− exp(−πx/hcαo).

This is because the region of dominance of the singular
field asx → 0 is very small for smallα0. The disen-
tanglement failure mechanism of the first fibril ahead
of the crack tip is a result of the accumulation of disen-
tanglement along the craze length,L.

Acknowledgements
Y. Sha, C. Y. Hui and E. J. Kramer are supported by the
Materials Science Center at Cornell, which is funded
by the National Science Foundation (DMR-MRSEC
program). The authors would like to thank Professor
A. Ruina for valuable discussions.

References
1. E. J. K R A M E R, Adv. Polymer Sci.52/53(1983) 1.
2. A . S. A R G O N andM . M . S A L A M A ,Mater. Sci. Eng.23(1977)

219.
3. D. S. D U G D A L E, J. Mech. Phys. Solid8 (1960) 100.
4. P. B E H A N, M . B E V I S andD. H U L L , Proc. Soc. Lond. A343

(1975) 525.
5. H. R. B R O W N, Macromolecules24 (1991) 2752.
6. C. Y . H U I , A . R U I N A , C. C R E T O N andE. J. K R A M E R,

ibid. 25 (1992) 3948.
7. Y . S H A, C. Y . H U I , A . R U I N A andE. J. K R A M E R, ibid.

28 (1995) 2450.
8. Idem., Acta Mater.45 (1997) 3555.
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